PHD Project - Driver energy prediction
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

256 lines
8.1 KiB

function compareTimings(statusBefore, statusAfter)
% COMPARETIMINGS compare timing of matlab2tikz test suite runs
%
% This function plots some analysis plots of the timings of different test
% cases. When the test suite is run repeatedly, the median statistics are
% reported as well as the individual runs.
%
% Usage:
% COMPARETIMINGS(statusBefore, statusAfter)
%
% Parameters:
% - statusBefore and statusAfter are expected to be
% N x R cell arrays, each cell contains a status of a test case
% where there are N test cases, repeated R times each.
%
% You can build such cells, e.g. with the following snippet.
%
% suite = @ACID
% N = numel(suite(0)); % number of test cases
% R = 10; % number of repetitions of each test case
%
% statusBefore = cell(N, R);
% for r = 1:R
% statusBefore(:, r) = testHeadless;
% end
%
% % now check out the after commit
%
% statusAfter = cell(N, R);
% for r = 1:R
% statusAfter(:, r) = testHeadless;
% end
%
% compareTimings(statusBefore, statusAfter)
%
% See also: testHeadless
%% Extract timing information
time_cf = extract(statusBefore, statusAfter, @(s) s.tikzStage.cleanfigure_time);
time_m2t = extract(statusBefore, statusAfter, @(s) s.tikzStage.m2t_time);
%% Construct plots
hax(1) = subplot(3,2,1);
histograms(time_cf, 'cleanfigure');
legend('show')
hax(2) = subplot(3,2,3);
histograms(time_m2t, 'matlab2tikz');
legend('show')
linkaxes(hax([1 2]),'x');
hax(3) = subplot(3,2,5);
histogramSpeedup('cleanfigure', time_cf, 'matlab2tikz', time_m2t);
legend('show');
hax(4) = subplot(3,2,2);
plotByTestCase(time_cf, 'cleanfigure');
legend('show')
hax(5) = subplot(3,2,4);
plotByTestCase(time_m2t, 'matlab2tikz');
legend('show')
hax(6) = subplot(3,2,6);
plotSpeedup('cleanfigure', time_cf, 'matlab2tikz', time_m2t);
legend('show');
linkaxes(hax([4 5 6]), 'x');
% ------------------------------------------------------------------------------
end
%% Data processing
function timing = extract(statusBefore, statusAfter, func)
otherwiseNaN = {'ErrorHandler', @(varargin) NaN};
timing.before = cellfun(func, statusBefore, otherwiseNaN{:});
timing.after = cellfun(func, statusAfter, otherwiseNaN{:});
end
function [names,timings] = splitNameTiming(vararginAsCell)
names = vararginAsCell(1:2:end-1);
timings = vararginAsCell(2:2:end);
end
%% Plot subfunctions
function [h] = histograms(timing, name)
% plot histogram of time measurements
colors = colorscheme;
histostyle = {'DisplayStyle', 'bar',...
'Normalization','pdf',...
'EdgeColor','none',...
'BinWidth',0.025};
hold on;
h{1} = myHistogram(timing.before, histostyle{:}, ...
'FaceColor', colors.before, ...
'DisplayName', 'Before');
h{2} = myHistogram(timing.after , histostyle{:}, ...
'FaceColor', colors.after,...
'DisplayName', 'After');
xlabel(sprintf('%s runtime [s]',name))
ylabel('Empirical PDF');
end
function [h] = histogramSpeedup(varargin)
% plot histogram of observed speedup
histostyle = {'DisplayStyle', 'bar',...
'Normalization','pdf',...
'EdgeColor','none'};
[names,timings] = splitNameTiming(varargin);
nData = numel(timings);
h = cell(nData, 1);
minTime = NaN; maxTime = NaN;
for iData = 1:nData
name = names{iData};
timing = timings{iData};
hold on;
speedup = computeSpeedup(timing);
color = colorOptionsOfName(name, 'FaceColor');
h{iData} = myHistogram(speedup, histostyle{:}, color{:},...
'DisplayName', name);
[minTime, maxTime] = minAndMax(speedup, minTime, maxTime);
end
xlabel('Speedup')
ylabel('Empirical PDF');
set(gca,'XScale','log', 'XLim', [minTime, maxTime].*[0.9 1.1]);
end
function [h] = plotByTestCase(timing, name)
% plot all time measurements per test case
colors = colorscheme;
hold on;
if size(timing.before, 2) > 1
h{3} = plot(timing.before, '.',...
'Color', colors.before, 'HandleVisibility', 'off');
h{4} = plot(timing.after, '.',...
'Color', colors.after, 'HandleVisibility', 'off');
end
h{1} = plot(median(timing.before, 2), '-',...
'LineWidth', 2, ...
'Color', colors.before, ...
'DisplayName', 'Before');
h{2} = plot(median(timing.after, 2), '-',...
'LineWidth', 2, ...
'Color', colors.after,...
'DisplayName', 'After');
ylabel(sprintf('%s runtime [s]', name));
set(gca,'YScale','log')
end
function [h] = plotSpeedup(varargin)
% plot speed up per test case
[names, timings] = splitNameTiming(varargin);
nDatasets = numel(names);
minTime = NaN;
maxTime = NaN;
h = cell(nDatasets, 1);
for iData = 1:nDatasets
name = names{iData};
timing = timings{iData};
color = colorOptionsOfName(name);
hold on
[speedup, medSpeedup] = computeSpeedup(timing);
if size(speedup, 2) > 1
plot(speedup, '.', color{:}, 'HandleVisibility','off');
end
h{iData} = plot(medSpeedup, color{:}, 'DisplayName', name, ...
'LineWidth', 2);
[minTime, maxTime] = minAndMax(speedup, minTime, maxTime);
end
nTests = size(speedup, 1);
plot([-nTests nTests*2], ones(2,1), 'k','HandleVisibility','off');
legend('show', 'Location','NorthWest')
set(gca,'YScale','log','YLim', [minTime, maxTime].*[0.9 1.1], ...
'XLim', [0 nTests+1])
xlabel('Test case');
ylabel('Speed-up (t_{before}/t_{after})');
end
%% Histogram wrapper
function [h] = myHistogram(data, varargin)
% this is a very crude wrapper that mimics Histogram in R2014a and older
if ~isempty(which('histogram'))
h = histogram(data, varargin{:});
else % no "histogram" available
options = struct(varargin{:});
minData = min(data(:));
maxData = max(data(:));
if isfield(options, 'BinWidth')
numBins = ceil((maxData-minData)/options.BinWidth);
elseif isfield(options, 'NumBins')
numBins = options.NumBins;
else
numBins = 10;
end
[counts, bins] = hist(data(:), numBins);
if isfield(options,'Normalization') && strcmp(options.Normalization,'pdf')
binWidth = mean(diff(bins));
counts = counts./sum(counts)/binWidth;
end
h = bar(bins, counts, 1);
% transfer properties as well
names = fieldnames(options);
for iName = 1:numel(names)
option = names{iName};
if isprop(h, option)
set(h, option, options.(option));
end
end
set(allchild(h),'FaceAlpha', 0.75); % only supported with OpenGL renderer
% but this should look a bit similar with matlab2tikz then...
end
end
%% Calculations
function [speedup, medSpeedup] = computeSpeedup(timing)
% computes the timing speedup (and median speedup)
dRep = 2; % dimension containing the repeated tests
speedup = timing.before ./ timing.after;
medSpeedup = median(timing.before, dRep) ./ median(timing.after, dRep);
end
function [minTime, maxTime] = minAndMax(speedup, minTime, maxTime)
% calculates the minimum/maximum time in an array and peviously
% computed min/max times
minTime = min([minTime; speedup(:)]);
maxTime = min([maxTime; speedup(:)]);
end
%% Color scheme
function colors = colorscheme()
% defines the color scheme
colors.matlab2tikz = [161 19 46]/255;
colors.cleanfigure = [ 0 113 188]/255;
colors.before = [236 176 31]/255;
colors.after = [118 171 47]/255;
end
function color = colorOptionsOfName(name, keyword)
% returns a cell array with a keyword (default: 'Color') and a named color
% if it exists in the colorscheme
if ~exist('keyword','var') || isempty(keyword)
keyword = 'Color';
end
colors = colorscheme;
if isfield(colors,name)
color = {keyword, colors.(name)};
else
color = {};
end
end