%% Skript zum Plot Poylnominterpolation %Skript für Plotbasics basics_plot clf %tatsächlich zu interpolierendes Polynom % plot([-pi:0.01:pi],sin([-pi:0.01:pi]),'LineStyle','-','Color','black') hold on %Interpolation mit v=3,5,7,9 Grad dist = 1.0; grad = 4:2:10; for i = 1:numel(grad) switch i case 1 line=myLineOne; case 2 line=myLineTwo; case 3 line=myLineThree; case 4 line=myLineFour; case 5 line=myLineFive; case 6 line=myLineSix; case 7 line=myLineSeven; end %Punkte generieren: uvec = -dist:(2*dist/(grad(i))):dist+0.001; rungefunc = @(x) 1./(1+25*x.^2); pvec = rungefunc(uvec); a = polyfit(uvec,pvec,grad(i)); y = polyval(a,[-dist:0.01:dist]); plot([-dist:0.01:dist],y,'LineStyle','--','Color',line) if grad(i) == 10 %Spline interpolation xx = [-dist:0.01:dist]; yy = spline(uvec,pvec,xx); plot(xx,yy,'LineStyle','-.','Color',myLineFive,'LineWidth',1.5) end end xlabel('\figureXLabel') ylabel('\figureYLabel') %% % a2 = polyfit(P(1,:),P(2,:),4); % y2 = polyval(a2,[-5:0.01:5]); % plot([-5:0.01:5],y2,'LineStyle','--','Color','red') box on grid on plot([-dist:0.01:dist],rungefunc([-dist:0.01:dist]),'LineStyle','-','Color','black') matlab2tikz('filename','plot_Interpolation_Polynom.tex',... 'height', '\figureheight', 'width', '\figurewidth', 'encoding', 'UTF8', 'showInfo', false, 'checkForUpdates', false, ... 'parseStrings', false, ... % switch off LaTeX parsing by matlab2tikz for titles, axes labels etc. ("greater flexibility", "use straight LaTeX for your labels") 'floatFormat', '%.4g', ... % limit precision to get smaller .tikz files 'noSize', false);