%% Skript zum Plot Interpolieren %Skript für Plotbasics basics_plot %Kontrollpunkte definieren: fig_Res = figure(1); % figure handle erzeugen clf(fig_Res) fig_Res.Color = [1, 1, 1]; % Hintergrundfarbe weiß fig_Res.Units = 'centimeters'; % figure Einheit in cm fig_Res.Position(3) = 16.49765; % hier kann man in cm die richtige Breite des Texts in LaTeX angeben ... fig_Res.Position(4) = 16; % und hier die Höhe der figure P = [-5 -2 0.5 5;-2 4 -1 2]; % scatter(P(1,:),P(2,:),'x','MarkerEdgeColor','black','LineWidth',1.5,'SizeData',400) % axis off axis equal hold on grid on text(P(1,1)+0.2,P(2,1)+0.1,'$\mv{r}_{i-1}$','Interpreter','none') text(P(1,2)+0.1,P(2,2)+0.4,'$\mv{r}_i$','Interpreter','none') text(P(1,3)+0.1,P(2,3)-0.3,'$\mv{r}_{i+1}$','Interpreter','none') text(P(1,4)-0.9,P(2,4)+0.3,'$\mv{r}_{i+2}$','Interpreter','none') %% Polynomfit % % a = polyfit(P(1,:),P(2,:),3); % y = polyval(a,[-5:0.01:5]); % plot([-5:0.01:5],y,'LineStyle','--','Color',myLineThree) %% Lineare Interpolation mit zirkularer Blende % Winkelhalbierende berechnen delta = [0,1.2,0.7,0]; for i = 2:size(P,2)-1 n1 = (P(:,i-1)-P(:,i))/norm(P(:,i-1)-P(:,i)); n2 = (P(:,i+1)-P(:,i))/norm(P(:,i+1)-P(:,i)); nWH = (n1+n2)/norm(n1+n2); %Richtungsvektor der Winkelhalbierenden % WH plotten WH = P(:,i)+[-1:0.01:4].*nWH; plot(WH(1,:),WH(2,:),'LineStyle','-.','Color',myGray50) % Kreimittelpunkt berechnen SP1 = P(:,i)+delta(i).*n1; SP2 = P(:,i)+delta(i).*n2; nSenk1 = [0 1;-1 0]*n1; nSenk2 = [0 1;-1 0]*n2; lambda = [-nSenk1 nSenk2]\(SP1-SP2); MP = SP1+lambda(1).*nSenk1; MP2 = SP2+lambda(2).*nSenk2; % plot(SP1(1),SP1(2),'Marker','o','Color',myLineOne,'MarkerEdgeColor','black','MarkerFaceColor','black') % plot(SP2(1),SP2(2),'Marker','o','Color',myLineOne,'MarkerEdgeColor','black','MarkerFaceColor','black') %Kreis Plotten plot(MP(1),MP(2),'Marker','o','Color',myLineOne,'MarkerEdgeColor','black','MarkerFaceColor','black') xval = SP1(1); yval = SP1(2); x = xval; y = yval; while xval < SP2(1) xval = xval + 0.01; if yval > MP(1) yval = +sqrt(lambda(1)^2-(xval-MP(1))^2)+MP(2); else yval = -sqrt(lambda(1)^2-(xval-MP(1))^2)+MP(2); end if imag(yval) == 0 x = [x, xval]; y = [y, yval]; end end x = [x,SP2(1)]; y = [y,SP2(2)]; plot(x,y,'LineStyle','-','Color',myLineTwo) % plot(MP2(1),MP2(2),'Marker','o','Color',myLineOne,'MarkerEdgeColor','black','MarkerFaceColor','black') end text(P(1,2)-0.7,P(2,2)-0.2,'$\delta_i$','Interpreter','none') text(P(1,3)-1.1,P(2,3)+0.3,'$\delta_{i+1}$','Interpreter','none') plot(P(1,:),P(2,:),'LineStyle','-','Marker','o','Color',myLineOne,'MarkerEdgeColor','black','MarkerFaceColor','black','LineWidth',1,'MarkerSize',5) xlabel('\figureXLabel') ylabel('\figureYLabel') %% % a2 = polyfit(P(1,:),P(2,:),4); % y2 = polyval(a2,[-5:0.01:5]); % plot([-5:0.01:5],y2,'LineStyle','--','Color','red') box on matlab2tikz('filename','plot_Interpolation.tex',... 'height', '\figureheight', 'width', '\figurewidth', 'encoding', 'UTF8', 'showInfo', false, 'checkForUpdates', false, ... 'parseStrings', false, ... % switch off LaTeX parsing by matlab2tikz for titles, axes labels etc. ("greater flexibility", "use straight LaTeX for your labels") 'floatFormat', '%.4g', ... % limit precision to get smaller .tikz files 'noSize', false); hold off % box off % Box um die figure herum ausblenden