PHD Project - Driver energy prediction
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

384 lines
47 KiB

2 years ago
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Test Jupyter\n",
"*italicized XXX*\n",
"\n",
"## Headline Two\n",
"\n",
"This is normal paragraph with **blod** letters\n",
"\n",
"1. Hallo\n",
"2. Second\n",
"3. Test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print('Hello World')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"application/json": {
"cell": {
"!": "OSMagics",
"HTML": "Other",
"SVG": "Other",
"bash": "Other",
"capture": "ExecutionMagics",
"cmd": "Other",
"debug": "ExecutionMagics",
"file": "Other",
"html": "DisplayMagics",
"javascript": "DisplayMagics",
"js": "DisplayMagics",
"latex": "DisplayMagics",
"markdown": "DisplayMagics",
"perl": "Other",
"prun": "ExecutionMagics",
"pypy": "Other",
"python": "Other",
"python2": "Other",
"python3": "Other",
"ruby": "Other",
"script": "ScriptMagics",
"sh": "Other",
"svg": "DisplayMagics",
"sx": "OSMagics",
"system": "OSMagics",
"time": "ExecutionMagics",
"timeit": "ExecutionMagics",
"writefile": "OSMagics"
},
"line": {
"alias": "OSMagics",
"alias_magic": "BasicMagics",
"autocall": "AutoMagics",
"automagic": "AutoMagics",
"autosave": "KernelMagics",
"bookmark": "OSMagics",
"cd": "OSMagics",
"clear": "KernelMagics",
"cls": "KernelMagics",
"colors": "BasicMagics",
"config": "ConfigMagics",
"connect_info": "KernelMagics",
"copy": "Other",
"ddir": "Other",
"debug": "ExecutionMagics",
"dhist": "OSMagics",
"dirs": "OSMagics",
"doctest_mode": "BasicMagics",
"echo": "Other",
"ed": "Other",
"edit": "KernelMagics",
"env": "OSMagics",
"gui": "BasicMagics",
"hist": "Other",
"history": "HistoryMagics",
"killbgscripts": "ScriptMagics",
"ldir": "Other",
"less": "KernelMagics",
"load": "CodeMagics",
"load_ext": "ExtensionMagics",
"loadpy": "CodeMagics",
"logoff": "LoggingMagics",
"logon": "LoggingMagics",
"logstart": "LoggingMagics",
"logstate": "LoggingMagics",
"logstop": "LoggingMagics",
"ls": "Other",
"lsmagic": "BasicMagics",
"macro": "ExecutionMagics",
"magic": "BasicMagics",
"matplotlib": "PylabMagics",
"mkdir": "Other",
"more": "KernelMagics",
"notebook": "BasicMagics",
"page": "BasicMagics",
"pastebin": "CodeMagics",
"pdb": "ExecutionMagics",
"pdef": "NamespaceMagics",
"pdoc": "NamespaceMagics",
"pfile": "NamespaceMagics",
"pinfo": "NamespaceMagics",
"pinfo2": "NamespaceMagics",
"pip": "BasicMagics",
"popd": "OSMagics",
"pprint": "BasicMagics",
"precision": "BasicMagics",
"profile": "BasicMagics",
"prun": "ExecutionMagics",
"psearch": "NamespaceMagics",
"psource": "NamespaceMagics",
"pushd": "OSMagics",
"pwd": "OSMagics",
"pycat": "OSMagics",
"pylab": "PylabMagics",
"qtconsole": "KernelMagics",
"quickref": "BasicMagics",
"recall": "HistoryMagics",
"rehashx": "OSMagics",
"reload_ext": "ExtensionMagics",
"ren": "Other",
"rep": "Other",
"rerun": "HistoryMagics",
"reset": "NamespaceMagics",
"reset_selective": "NamespaceMagics",
"rmdir": "Other",
"run": "ExecutionMagics",
"save": "CodeMagics",
"sc": "OSMagics",
"set_env": "OSMagics",
"store": "StoreMagics",
"sx": "OSMagics",
"system": "OSMagics",
"tb": "ExecutionMagics",
"time": "ExecutionMagics",
"timeit": "ExecutionMagics",
"unalias": "OSMagics",
"unload_ext": "ExtensionMagics",
"who": "NamespaceMagics",
"who_ls": "NamespaceMagics",
"whos": "NamespaceMagics",
"xdel": "NamespaceMagics",
"xmode": "BasicMagics"
}
},
"text/plain": [
"Available line magics:\n",
"%alias %alias_magic %autocall %automagic %autosave %bookmark %cd %clear %cls %colors %config %connect_info %copy %ddir %debug %dhist %dirs %doctest_mode %echo %ed %edit %env %gui %hist %history %killbgscripts %ldir %less %load %load_ext %loadpy %logoff %logon %logstart %logstate %logstop %ls %lsmagic %macro %magic %matplotlib %mkdir %more %notebook %page %pastebin %pdb %pdef %pdoc %pfile %pinfo %pinfo2 %popd %pprint %precision %profile %prun %psearch %psource %pushd %pwd %pycat %pylab %qtconsole %quickref %recall %rehashx %reload_ext %ren %rep %rerun %reset %reset_selective %rmdir %run %save %sc %set_env %store %sx %system %tb %time %timeit %unalias %unload_ext %who %who_ls %whos %xdel %xmode\n",
"\n",
"Available cell magics:\n",
"%%! %%HTML %%SVG %%bash %%capture %%cmd %%debug %%file %%html %%javascript %%js %%latex %%markdown %%perl %%prun %%pypy %%python %%python2 %%python3 %%ruby %%script %%sh %%svg %%sx %%system %%time %%timeit %%writefile\n",
"\n",
"Automagic is ON, % prefix IS NOT needed for line magics."
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%lsmagic"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsvXeUZVd95/v57RNuvpVTh6rOSVlqJRoFUAYjEQWyMSYYxjPGz+OH7TeeNX7LC3v8bC+87DFmwBgzGGOSAAkRhSQkWpIVOqhb6m51jtWVw62qm0/Y749b3epWV65b+XzW0lLXrXP3/t2653zPPr/9C6K1JiAgICBgcaHm2oCAgICAgPITiHtAQEDAIiQQ94CAgIBFSCDuAQEBAYuQQNwDAgICFiGBuAcEBAQsQgJxDwgICFiEBOIeEBAQsAgJxD0gICBgEWLO1cS1tbV61apVczV9QEBAwIJk165dPVrruvGOmzNxX7VqFTt37pyr6QMCAgIWJCJyaiLHBW6ZgICAgEVIIO4BAQEBi5BA3AMCAgIWIYG4BwQEBCxCxhV3EfmqiHSJyL5Rfi8i8g8iclREXhWRa8tvZkBAQEDAZJjIyv1rwL1j/P4+YP3wf58Cvjh9swICAgJGR2tN0GhobMYNhdRabxeRVWMc8gDwdV36S78oIpUi0qS1bi+TjQEBAUuYnONwoKeLo6leDvb20Do4QMHzAAgZBiuTFWysqWVdZQ1bauuJWNYcWzw/KEec+3LgzAU/tw6/Foh7QEDAlGlPD/H0qeM8c/oEzrCYx2ybynAEQwQAT2u6MhlOpPqBI1iGwdua1/C2ltU0xhNzaP3cUw5xlxFeG/F5SUQ+Rcl1Q3NzcxmmDggIWGw4nsdPjh3ih0deRxCqwxEswxjxWFOERChEIhQ6/94nTh7lFyeP8O71W3jH2g2jvnexUw5xbwVWXvDzCqBtpAO11l8GvgywdevWwGEWEBBwEW1Dg3xh90u0Dg5QF4thqckJs2UYNMTiOJ7H9w/t5+X2Vn732htZlkjOkMXzl3KEQj4GfGQ4auYmYCDwtwcEBEyWE6l+Pvv803RnMyxLJCct7BdiGQbLE0m6sxn+4vlnODnQX0ZLFwYTCYX8FvACsFFEWkXkEyLyOyLyO8OH/BQ4DhwF/hn4LzNmbUBAwKKkdWiAv35xO0qEmki0bOPWRKIg8NcvbKd1aKBs4y4EJhIt89A4v9fA75bNojlAaw3eGbSzG5yD4J0BXQSxQDWCtRGxrgZzPSJB3ldAQDnJuy7/sOMFtIaKcLjs41eEwvTlsnx+54t89tY7CBlzVi9xVlkan3IMtHsUnf0WuCcBBRIFSYIowAe/H/JPofNPgFGLDn8Qsa9GZKR95IDZQOs8nteG76cBHxELpepRqjb4XhYgPzxygK5smqb4zPnFqyNR2oYG+dGRg7x/0+UzNs98YsmKu9YOOvcI5H9eEnTVBJcIgwKJA/HSj34aMp9HOzdC9MOIis222UsW3++nkH+OQmE7ntdOKUhr+PsSQGtEbCzrMkLhO7GsyxBZmlESC4lTAyl+duwIddH4jM9VH4vz46MHuaFpBc0VlTM+31yzJMVdawed/hI4r4BqAJngn0HFQUehuAPtdUDiM4ia+ZNyKeP7A2Qz36ZQeA7QiCRRqnFE95jWDsXiPorF3ShVRTT6YezQDcFqfh7z+PEjGKIw1cy7O02lUKJ44uRRPnHV1hmfb65Zkg5knf0mOHtALZu4sJ9DFBhN4J1Fp7+A1t7MGBlAobCTVOqPKBSeQ6l6DGMZSsVH3fcQsTCMWgxjGVr7DKX/nvTQ/8L3U7NsecBEGCjkebHtDDWRyKzNWROJ8nzraYaKhVmbc65YcuKunX1Q+FVpo3Q6KzpVD+4hdOHp8hkXAJQ2uLPZRxka+lvQFobRNGkXi1IxDLWcYnE3A6k/xfM6ZsjagKmyp7MdT/sYs7BqP4epFJ7v80rHiKk4i4olJe5au+jM10AqhjdMp4EIqDrIfQ/tD5bFvoAS+dyPyWa/g6GaUNPY1xBRGEYjvp9lcODP8bzuMloZMF0O9HTNSeSKbZi83tsz6/PONktK3HFfBz9V8p2XA7FBu+jiS+UZLwDHOUA2+y0M1YhM1mU2CoZRg6+zpIc+j9ZuWcYMmD5H+nqJWfaszxuzLY70BeK+qNCF7SVBLieqAgpPlnfMJYrvZ0kPfRGRJCLlreynpBbHPUo+/3hZxw2YGnnXoTefIzQHdV/ChklPLkveXdw3+iUTLaO1BucQSLkrxUXAa0f76SByZprkcj/G9/swjOVlH1tEMFQ92cx3CNk3o4zqss8RMHEKroeC6UcySQasVjD6QRxAgR8CtwncBkaSOBFBBAqeS9hcvBK4eD/Zm9GDoHOllXY5EQExwO8Ata68Yy8htM6Tzz+OUrUzNoeIDfgUCs8Rid4/Y/MEjI9GM3JB2Ym9G6MH7BOIMbyPoi3QCkSDkQazE7SJdlrAaS6FMF80hIxSu3bxsITEPc/UT6bxkNKNI2DKFAqvgC4gqmZG51Gqilz+Z4Qj7yibTz9g8liGMSzwk0WDfRDsY+iiSbErSrEX/CIgYMYEuwbMihCifMQ+DvYpdO568EpPa1prND72Ii8FvITO7plMZNHA4j5RZhrH2QGEZnwekQi+147nncU0W2Z8voCRiZoWUcui6HmTEFmNtl+j2HuGwd0Rhg4AWoPWnO+4J6UrXUWEyuuFxGVRzISDRF5E524CrxrH94jboUXtkoGlJO6qEtCg/emHQb4ZfW78gKniOoenFfY4OXw8rzUQ9zlERFhfVcOhvh5sY2JJTJ57jJ5nzpLdF0IMTShZ8sToERZuflHTu13T/zzUvN0keRVIZAc681YyjmJTTd2iz1xeMuIuYqONRvCzpVoy5UJ7w0uF+vKNucTw/Qy+349Sy2ZpRhPXOUootG2W5gsYiU01deztagfGFveISlM9eJAjj5wimdc0NxVK67NhbS76JlnfJuuHyHohNIKyBbsafEfT/bgmc8Sg8d1FxDpJbnAlm2vqZvzzzTVLKhQS+9rSxmo50Skwrwj8t9NA6xxgzNpKSsTCL/d5EDBprmloAsDXI/veq60ubqn+ObfLNzn1vVPY2iVe4+KIQVGbFH2Tom+gxKfCyLLM6md1uIsqM40hPgDKEqwaTfakpu3hML4+jSj3/NyLmSUl7mJv47xrphxoDbqIhO8oz3hLlrkIWyjTORAwZRrjCbbU1pPKXxyMYIjD1ckXeGfDd2ngFD/5tyZc0dgJPeyCuXARIPha4WiTojbRCLXmEC2hbqKqVD9GRLCqIH8Gup7WrK93qI8t/rDlpSXuRj3YN4LfVZ4BdT+YzWBuKs94SxSREOCVchFmAa09hMV/cS8E7l2zgZzrnv/u48YAv9bwHa5I7mLIqeA/nqwnO6SIJp1S+OI4+Foo6tJT9PJQL3XWYOl2IIJVDYO7TRIDfTP5keYNS0rcAST6wZLP3U9PbyBdBO0gsU8E3ZmmiUgCkTjgzNKMRUxz7SzNFTAWV9Q1cF3jMrqzGeLGAPfWf5+oyjDgVDPQZ3F4R4h49eQzST2tKPomlWaaeiuFAJ5oIjGDU48PztpCYi5ZcqokKonE/zPodGlzdSroYmn1H/0wMgPZlEsNEcG01qN1ZpZmNDDM4HubD4gIH7niGhKWw9trf4ApDhmvlEV+fG+pBIVSUxVioeibJM0sVeYgglBVHWagzaH9dG+ZPsH8ZcmJO4BYmyD++0AGvB6YzF3cT4HfC9GPoMK3zpiNSw3bugZfT/FmOwn0cG9c01w543MtFXztk/dyDDgDpN00jl+c1PsrQ2E+c+VZbBlkyH0jHPbY7hCRpMf0clRKAl9tpmmMKJQSDGWwf9fJaYy5MFiyIR7Kvhxt/Bk683/APQoSAakcuca71qWVvh4Cox6J/VckeKwvK3boRiTzdbR2ZzTyyPd7CUfuQ6T8jZiXGmk3zcHB19ndv4ucl0VE0IDWPi3RFq6puo6V0WaM8Wrxu/tosl/FSK7lQE8PIcPEzRrk04pE7XTFHXwNhmF
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"\"\"\"\n",
"Simple demo of a scatter plot.\n",
"\"\"\"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"N=50\n",
"x=np.random.rand(N)\n",
"y=np.random.rand(N)\n",
"colors=np.random.rand(N)\n",
"area=np.pi*(18*np.random.rand(N))**2 #0 to 15 point radiuses\n",
"plt.scatter(x,y,s=area,c=colors,alpha=0.6)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/YJC6ldI3hWk\" frameborder=\"0\" allowfullscreen></iframe>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%%HTML\n",
"<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/YJC6ldI3hWk\" frameborder=\"0\" allowfullscreen></iframe>"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"68.9 µs ± 9.78 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"square_evens = [n*n for n in range(1000)]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" <th>2</th>\n",
" <th>3</th>\n",
" <th>4</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.809287</td>\n",
" <td>0.699242</td>\n",
" <td>0.561213</td>\n",
" <td>0.709627</td>\n",
" <td>0.986164</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0.086052</td>\n",
" <td>0.886943</td>\n",
" <td>0.533827</td>\n",
" <td>0.012499</td>\n",
" <td>0.139520</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.371663</td>\n",
" <td>0.211376</td>\n",
" <td>0.937434</td>\n",
" <td>0.011237</td>\n",
" <td>0.106434</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.081288</td>\n",
" <td>0.801140</td>\n",
" <td>0.649774</td>\n",
" <td>0.954318</td>\n",
" <td>0.219239</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0.842870</td>\n",
" <td>0.087737</td>\n",
" <td>0.815415</td>\n",
" <td>0.708544</td>\n",
" <td>0.654585</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 0 1 2 3 4\n",
"0 0.809287 0.699242 0.561213 0.709627 0.986164\n",
"1 0.086052 0.886943 0.533827 0.012499 0.139520\n",
"2 0.371663 0.211376 0.937434 0.011237 0.106434\n",
"3 0.081288 0.801140 0.649774 0.954318 0.219239\n",
"4 0.842870 0.087737 0.815415 0.708544 0.654585"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"df = pd.DataFrame(np.random.rand(10,5))\n",
"df.head()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}